0=-16t^2+72t+84

Simple and best practice solution for 0=-16t^2+72t+84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+72t+84 equation:



0=-16t^2+72t+84
We move all terms to the left:
0-(-16t^2+72t+84)=0
We add all the numbers together, and all the variables
-(-16t^2+72t+84)=0
We get rid of parentheses
16t^2-72t-84=0
a = 16; b = -72; c = -84;
Δ = b2-4ac
Δ = -722-4·16·(-84)
Δ = 10560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10560}=\sqrt{64*165}=\sqrt{64}*\sqrt{165}=8\sqrt{165}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-8\sqrt{165}}{2*16}=\frac{72-8\sqrt{165}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+8\sqrt{165}}{2*16}=\frac{72+8\sqrt{165}}{32} $

See similar equations:

| 12x+3=14+25 | | 6+9y=5y+30 | | 0=-16t+72t+84 | | 9x-3+7x=16x-6 | | 6t–10=4t+12 | | h+12.8=12.8 | | 13=y+2 | | x+3+9x-63=x | | -4+f=9 | | -3p+6=31 | | 6x–20=4x+48 | | -25=-5(3x-13) | | 3x-9=65-14 | | 5-3/4x=13-1/2x | | 10m =3m+287m=28 | | 9-9(x+4)-7x=7-2 | | -9(2x-6)=-72 | | 3-(x+9)=3+3 | | 9x-3x+3=-9 | | -5=4x-x+7 | | 11i^2+7i=0 | | 9=a/9 | | q/10=10 | | -15=3(9x+4) | | 4-7(x-9)=-7-6(x-10) | | 5x+.25=7x-0.05 | | 44=4(4x+7) | | -10+2j=10 | | 9x16=56 | | 2y+6-3y-5=7 | | 10=-50/x | | -18=3x+33 |

Equations solver categories